The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea

نویسندگان

  • Robin Duponnois
  • Aline Colombet
  • Victor Hien
  • Jean Thioulouse
چکیده

Plants inoculated with arbuscular mycorrhizal (AM) fungi utilize more soluble phosphorus from soil mineral phosphate than noninoculated plants. However, there is no information on the response of soil microflora to mineral phosphate weathering by AM fungi and, in particular, on the catabolic diversity of soil microbial communities. The AM fungus, Glomus intraradices was examined for (i) its effect on the growth of Acacia holosericea, (ii) plant-available phosphate and (iii) soil microbial activity with and without added rock phosphate. After 4-months culture, AM fungal inoculation significantly increased the plant biomasses (by 1.78! and 2.23! for shoot and root biomasses, respectively), while mineral phosphate amendment had no effect in a sterilized soil. After 12-months culture, the biomasses of A. holosericea plants growing in a non-sterilized soil amended with mineral phosphate were significantly higher than those recorded in the control treatment (by 2.5! and 5! for shoot and root biomasses, respectively). The fungal inoculation also significantly stimulated plant growth, which was significantly higher than that measured in the mineral phosphate treatment. When G. intraradices and mineral phosphate were added together to the soil, shoot growth were significantly stimulated over the single treatments (inoculation or amendment) (1.45!). The P leaf mineral content was also higher in the G. intraradicesCmineral phosphate treatment than in G. intraradices or rock phosphate amendment. Moreover, the number of fluorescent pseudomonads has been significantly increased when G. intraradices and/or mineral phosphate were added to the soil. By using a specific type of multivariate analysis (co-inertia analysis), it has been shown that plant growth was positively correlated to the metabolization of ketoglutaric acid, and negatively linked to the metabolisation of phenylalanine and other substrates, which shows that microbial activity is also affected. G. intraradices inoculation is highly beneficial to the growth of A. holosericea plants in controlled conditions. This AM symbiosis optimises the P solubilization from the mineral phosphate and affects microbial activity in the hyphosphere of A. holosericea plants. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of arbuscular mycorrhizal fungus, plant growth promoting rhizobacterium, and soil drying on different forms of potassium and clay mineral changes in a calcareous soil under maize planting

ABSTRACT- Greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the effect of Glomus intraradices, Pseudomonas fluorescence and soil drying on different forms of potassium (K) and the changes of clay minerals in a calcareous soil after maize planting. Treatments consisted of arbuscular mycorrhizal (AM) fungus at two levels: G0 (...

متن کامل

Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi

The potential benefits of inoculation with AM (arbuscular mycorrhizal) fungi were investigated on Atlas Cypress (Cupressus atlantica G.), an endemic Cupressacea in Morocco. The parameters under study were (i) the growth of the plant, (ii) the functional diversity of soil microflora and (iii) the rock phosphate (RP) solubilizing activity. C. atlantica growth was measured after 12 months of cultu...

متن کامل

Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling.

The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizin...

متن کامل

Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis

Lead is a nonessential element that has a negative effect on plant growth and development. Plant symbiosis with arbuscular mycorrhizal fungi (AMF) in soils contaminated with heavy metals can affect growth of plant, nutrition and tolerance against heavy metals. In this study, the effect arbuscular mycorrhizal fungi Glomus intraradices on the growth, photosynthetic pigments, protein content, prol...

متن کامل

Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability.

* The influence of carbohydrate availability to mycorrhizal roots on uptake, metabolism and translocation of phosphate (P) by the fungus was examined in axenic cultures of transformed carrot (Daucus carota) roots in symbiosis with Glomus intraradices. * 14C-labelled carbohydrates, 33P-phosphate and energy dispersive X-ray microanalysis were used to follow the uptake and transfer of C and P in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005